Warner Bros. Taps Intel AI to Connect Content and Audience

Jun 05, 2018

Author Bio Image

Fiaz Mohamed

Head of Business Development, Artificial Intelligence Products Group

Consider the following problem. You’re looking for new approaches to marketing a beloved 90s sitcom, which has already been enormously successful in syndication and home video sales. The show produced hundreds of half-hour episodes—more than 80 hours of video altogether. How do you determine which scenes will best resonate with your target audiences? How could you know what clips cue which emotions, and how those emotions might affect what people want to watch? How do you find the needle in the haystack that will maximize the impact of your ongoing marketing efforts?

Perhaps more importantly, where will you find time to review and carefully catalog dozens of hours of video?

Challenge: Curate Video Content with AI

I recently had the pleasure of sitting down with Warner Bros. Technology’s Justin Herz at O’Reilly AI NYC to discuss how he and his team are approaching these challenges with help from Intel. Herz is Warner Bros.’ Executive Vice President for Digital Product, Platform, and Strategy, and is responsible for implementing technology innovations that create new revenue, improve the bottom line, or transform how Warner Bros. produces, distributes, and markets its content.

For Herz, the earlier hypothetical use case is actually a real-world problem. In our talk, Herz spoke to the challenges Warner Bros. encountered when trying to analyze the more than 200-episode run of one of WB’s most celebrated television properties. This is an imposing amount of data. We later found, for example, that we needed to tag a minimum of 80,000 bounding boxes in order to be able to identify the main characters and their emotions. This data was then used to train up multiple models that work together to recognize talent, emotion, and intensity of emotion across all 10 seasons of the show.

In the past, Warner Bros. had attempted to create video metadata through various “black box” solutions that could programmatically extract metadata or manual tagging efforts that were difficult to scale. These earlier efforts were unsuccessful, and Warner Bros. turned to Intel.

Unprecedented Curation Efficiency with AI

Last year, Warner Bros. began working with Intel to use artificial intelligence to apply video metadata to improve content discovery and monetization. Initially, Warner Bros. worked on one of their properties before targeting to scale the solution across the rest of its content catalog.

To solve this problem, Intel data scientists first developed a training data set via crowdsourcing. The team then studied the training data—in Herz’ words, learning the “shape of the data”—to determine a suitable algorithm to be implemented.

After training and testing, the team selected a single shot multibox detector to identify talent and an ensemble of five convolutional neural networks for emotion and emotion intensity detection, running on Intel® Xeon® processors. Inference results were then stored in a database now used to identify clips in which characters demonstrate certain emotions. Warner Bros. is testing whether the impact of these emotions can drive intent to purchase, intent to view, and other business outcomes associated with marketing activities.

Using these technologies, Warner Bros. is becoming far more efficient at highlighting the clips that different core audiences most want to see and can do so on a scale impossible prior to applying AI to this problem. As a result, viewers can more easily connect with and purchase the content they most desire, increasing revenue for the studio.

To learn more about the possibilities AI can enable for your organization, please visit https://ai.intel.com.

Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation 

Author Bio Image

Fiaz Mohamed

Head of Business Development, Artificial Intelligence Products Group

Related Blog Posts

Intel® Movidius™ Neural Compute Stick: One Year On

In the summer of 2017, I was involved in the type of project that very few get to work on during their careers: the launch of a new category of devices. While new product launches happen all the time, it’s rare to witness—let alone help launch—an entirely new type of product. The device in question…

Read more

#Technology

Data Analytics and AI are Just What the Doctor Ordered

The healthcare industry is ripe for adoption of multiple aspects of artificial intelligence (AI).  In a segment with an abundance of use cases to inform AI solutions, it’s easy to see how the healthcare industry can benefit from the insights provided by AI. And the stakes are high when patient outcomes can be impacted by…

Read more

#Solutions #Technology

Applying Deep Learning to Genomics Analysis

Synthetic Genomics, Incorporated (SGI) is a synthetic biology company that aims to bring genomic-driven solutions to market. They design and build biological systems and conduct interdisciplinary research by combining biology and engineering to address global sustainability problems SGI asked for Intel’s help to conduct a deep learning proof of concept that would automatically tag a…

Read more

#Research #Technology